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Introduction
▶ Despite its questionable reputation, a

selection-on-observables (SOO) research design is
extremely common in the social sciences
▶ The empirical strategy in such papers is ‘control for stuff

and hope for the best’
▶ This may only be adequate if the set of controls is

sufficiently large
▶ However, we need regularization and variable selection

with high-dimensional x
▶ High-dimensional regression performs Shrinkage and

Selection with a single tuning parameter, and can only do
well at both under implausibly strong assumptions

▶ This paper: apply simulation-based variable selection
methods to improve covariate adjustment using balancing
and regression estimators
▶ Focus on estimation, no new results on identification
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The Contribution

Estimation of treatment effects using two steps.
▶ (0) Basis expansion and interactions of covariates
▶ Variable selection using double-LASSO approach

▶ covariates that predict treatment
▶ covariates that predict output

▶ Estimation
▶ Balancing estimator
▶ Regression
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Setup
▶ DataD = (Yi, Di,Xi)

N
i=1 ∈ R× {0, 1} × Rk

▶ Conventional settings: k << n
▶ Modern settings: k ≈ n

▶ Potential outcomes Y (D), τi = Yi(1)− Yi(0). Interested
in SATT := 1

n

∑
i:Di=1 τi

▶ SOO assumptions for ATT
▶ Unconfoundedness: Y (0) ⊥⊥ D| X - needX to be

potentially quite large for this to be true
▶ (weak) Overlap: p(X) < 1 where p(X) is the propensity

score . Higher-dimensionalXmight lead to violations of
overlap, since in ever smaller cells of x, we cannot find
both treatment and control units.

▶ Need to impute

Ê[Y (0)|D = 1] =

∑
i:D=0 Yiwi∑
i:D=0 wi
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Entropy Balancing
▶ IPW estimators typically rely on inverse propensity score

weights wi := p̂(Xi)/(1− p̂(Xi) to make the re-weighted
control group look like the treatment group

▶ Need well-specified p̂: fit, assess-balance loop
▶ Hainmueller (2012): Choose balancing weights wi

max
w

H(w) = −
∑

i:Di=0

h(wi) = wi logwi

Balance constraints:
∑

i:Di=0

wicri(Xi) = mr with r ∈ 1, . . . , R

‘Proper’ weights:
∑

i:Di=0

wi = 1 and wi ≥ 0 ∀ {i : D = 0}

▶ Choice of balance condition? Kernel (Wong and Chan
2018; Hazlett 2018), Hierarchical shrinkage (Yang and Xu
2021) 6 / 21



Double-LASSO Covariate Adjustment
▶ Stipulate a partially linear outcome model

Yi = τDi + g(Xi) + Ui, and approximate the nuisance
g(·) using a basis expansion
▶ a naive solution would be to simply estimate this

regression without shrinking τ
▶ this produces ‘regularization bias’ resulting in biased

estimates of τ̂ : form of OVB reg-bias

▶ Need propensity score model tooDi = m(Xi) + Vi

▶ Double-LASSO (Belloni, Chernozhukov, and Hansen
2014): Fit both outcome and pscore using LASSO
regressions, adjust for S1 ∪ S2

▶ Double ML (Chernozhukov et al. 2018): use FWL-logic
(Robinson 1988) to partial outXs and regress residuals
on residuals
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Variable Selection using LASSO Regression

β̂ = argmin
β

N∑
i=1

(
yi −

p∑
j=1

xijβj

)
+ λ

p∑
j=1

∥βj∥1︸ ︷︷ ︸
regularisation term

▶ λ penalises model complexity, ∥.∥1 induces sparsity in the
estimated coefficient vector β̂

▶ Choosing λ is a challenging problem because a single
parameter needs to perform both shrinkage and selection

▶ Wuthrich and Zhu (2021) show that in finite samples, the
BCH regularization parameter typically under-selects (i.e.
zeroes-out too many variables), resulting in severe
omitted-variables bias, especially in settings where theR2

of the generative model is low.
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Better Variable Selection: Knockoffs
▶ Approach proposed by Barber and Candes Barber and

Candès (2015)
▶ Basic idea - ifX predicts the outcome well, it ought to do

better than a knockoff X̃ , which mimics the covariance
structure similar to the data matrix but is independent of
Y
▶ Under some implausibly strong assumptions, this controls

the False Discovery Rate (FDR) in finite samples
▶ ‘cheap’ knockoff: permute rows of design matrixX to

construct X̃ Gégout-Petit, Gueudin-Muller, and Karmann
(2020)

▶ for LASSO regression, define test statistic
Tj := sup{λ > 0, β̂j(λ) ̸= 0} j ∈ {1, . . . , 2p}

Wj := Tj ∨ T̃j ×

{
+1 Ti ≥ T̃i

−1 Ti ≤ T̃i

keep ifWj ≥ q
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The Contribution
1. Variable selection:

▶ regress outcome on covariates using LASSO, select
predictive variables using the knockoff selector, call them
S1

▶ regress treatment on covariates using LASSO, select
predictive variables using knockoff selector, call them S2

2. Estimation:
▶ Knockoff Entropy Balancing (KOEB): Perform entropy

balancing on the set of moment conditions (S1 ∪ S2

instead of the full set of predictors and polynomials and
interactions)

▶ Knockoff Selection (KOSEL): perform ‘post-LASSO’ linear
regression, as in Belloni, Chernozhukov, and Hansen
(2014), wherein the researcher regresses the outcome on
treatment, controlling for variables that are predictive of
either the outcome of the treatment (i.e. S1 ∪ S2).

11 / 21



Simulation Study on Lalonde (1986) sample

▶ Take 445 observations from the original NSW study
▶ Specify highly nonlinear outcome and pscore model DGP

▶ Study bias and variance of standard estimators to
benchmark the knockoff-based proposals over many
replications
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MSE Comparison

Estimator BIAS MAD RMSE Runtime
Difference in Means -8688.830 6701.07 8693.297 0.002
OLS 182.809 170.63 406.217 0.008
double-LASSO (Double Selection) 138.579 143.19 483.177 5.656
double-LASSO (Knockoff Selector) -118.660 -119.02 248.369 5.241
double-LASSO (Partial Out) -209.952 -192.02 449.809 5.589
Entropy Balancing -0.017 -0.02 1.627 0.098
Entropy Balancing (Knockoff selection) -0.017 -0.02 1.627 0.012
Mahalanobis Distance Matching -105.078 -106.04 124.366 0.096
PScore + MD Matching -493.439 -496.68 523.188 0.102
Propensity Score Matching -2681.354 747.97 3060.527 0.055
Propensity Score Weighting -191.590 -182.32 293.271 0.007

Entropy Balancing also outright fails frequently, while knockoff
entropy balancing does not.
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Blattman (2009)

▶ studies the effects of involuntary rebel recruitment on
postwar political engagement and socio-political
behaviour of ex-combatants using an individual level
dataset.

▶ 36 controls, 542 observations
▶ All pairwise interactions : 36 + (36× 35)/2 = 666
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Lyall (2010)

▶ effect of democracy’s impact on counterinsurgency (COIN)
war outcomes (extensive margin) and duration (intensive
margin).

▶ data on war outcomes and covariates for internal conflicts
from 286 insurgencies from 1800-2005
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Conclusion

▶ Choice of variables to adjust for is a major ‘researcher
degree-of-freedom’

▶ Recent advances in using high-dimensional regression
have appealing theoretical properties, but variable
selection step has suboptimal finite sample properties

▶ We propose a method of combining recent advances in
variable selection with balancing and regularized
regression (double-LASSO) estimators to estimate causal
effects

▶ caution: Conditioning on Post-treatment variables is still
bad (Hünermund, Louw, and Caspi 2021)
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Regularization Bias
Assume we fit

τ̂ =

(
1

n

∑
i

D2
i

)−1(
1

n

∑
i

Di(Yi − ĝ(Xi))

)
IfDi = m(Xi) + Vi,

√
n(τ̂ − τ) =

(
1

n

∑
i

D2
i

)−1(
1/
√
n
∑
i

DiUi

)
︸ ︷︷ ︸

⇝ N (0, ·)

+

(
1

n

∑
i

D2
i

)−1(
√
n
∑
i

Di(g − ĝ)

)
︸ ︷︷ ︸

Since ĝ is biased, ̸→ 0
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DGP for Simulation Study

Y = 1000D + 0.1 exp[0.7(log(re74 + 1))] + 0.7 log(re75 +1)+
0.6 exp(log(re74)× hispanic)− 0.01black × log(age + 1) + ϵ

πi = logit−1(1 + .4µ+ .1age − .3educ − .09re74 − .05re75
+ .2u74 × u75 + .3married × u75 − .2 log(re75)× log(age)2

− .1black × log(age) + .05hispanic × log education
+ .1hispanic × nodegree × u74 − .05black × u74 × u75
− .05married × nodegree × log(re74) + ηi)

Back
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